Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(37): e202303233, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37507348

RESUMO

Balancing the activation of H2 O is crucial for highly selective CO2 electroreduction (CO2 RR), as the protonation steps of CO2 RR require fast H2 O dissociation kinetics, while suppressing hydrogen evolution (HER) demands slow H2 O reduction. We herein proposed one molecular engineering strategy to regulate the H2 O activation using aprotic organic small molecules with high Gutmann donor number as a solvation shell regulator. These organic molecules occupy the first solvation shell of K+ and accumulate in the electrical double layer, decreasing the H2 O density at the interface and the relative content of proton suppliers (free and coordinated H2 O), suppressing the HER. The adsorbed H2 O was stabilized via the second sphere effect and its dissociation was promoted by weakening the O-H bond, which accelerates the subsequent *CO2 protonation kinetics and reduces the energy barrier. In the model electrolyte containing 5 M dimethyl sulfoxide (DMSO) as an additive (KCl-DMSO-5), the highest CO selectivity over Ag foil increased to 99.2 %, with FECO higher than 90.0 % within -0.75 to -1.15 V (vs. RHE). This molecular engineering strategy for cation solvation shell can be extended to other metal electrodes, such as Zn and Sn, and organic molecules like N,N-dimethylformamide.

2.
J Chem Phys ; 156(20): 204312, 2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35649863

RESUMO

Ionic liquids (ILs) are novel promising materials widely used in various fields. Their structures and properties can be tuned by means of external perturbations, thus further broadening their applications. Herein, forces proportional to atomic mass (mass-related field) and atomic charge (electric field) are applied in molecular dynamics simulations to the IL 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide to investigate the origin of the resulting changes in structures and dynamics. The results show that both electric and mass-related fields cause the ion cages to expand and deform, eventually leading to their breakdown to produce a transformation of ILs from the cage structure to a channel-like structure, which results in faster self-diffusion of ions in the directions of the applied force and to a lesser extent other directions. Further comparison of electric and mass-related fields demonstrates that only the electric fields reorientate cations to produce a hydrodynamically favored conformation in the force direction, which shows faster diffusion. The cis isomer of the anion is preferred in the presence of the electric fields, whereas applying the forces proportional to mass does not change the anion conformer equilibrium significantly. The results presented in this work aid in the understanding of how ions adjust their structures to adapt to external perturbations and facilitate the application of ILs as electrolytes.

3.
iScience ; 23(1): 100768, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31887657

RESUMO

Nowadays, photoelectrocatalytic (PEC) reduction of CO2 represents a very promising solution for storing solar energy in value-added chemicals, but so far it has been hampered by the lack of highly efficient catalyst of photocathode. Enlightened by the Calvin cycle of plants, here we show that a series of three-dimensional C/N-doped heterojunctions of Znx:Coy@Cu are successfully fabricated and applied as photocathodes in the PEC reduction of CO2 to generate paraffin product. These materials integrate semiconductors of p-type Co3O4 and n-type ZnO on Cu foam to construct fine heterojunctions with multiple active sites, which result in excellent C-C coupling control in reduction of CO2. The best catalyst of Zn0.2:Co1@Cu yields paraffin at a rate of 325 µg·h-1 under -0.4 V versus saturated calomel electrode without H2 release. The apparent quantum efficiency of PEC cell is up to 1.95%.

4.
J Chem Phys ; 144(12): 124703, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-27036471

RESUMO

In this work, the phenomenon of the voltage generation is explored by using the molecular dynamics simulations, which is performed by driving a nano-sized droplet of room temperature ionic liquids moving along the monolayer graphene sheet for the first time. The studies show that the cations and anions of the droplet will move with velocity nonlinearly increasing to saturation arising by the force balance. The traditional equation for calculating the induced voltage is developed by taking the charge density into consideration, and larger induced voltages in µV-scale are obtained from the nano-size simulation systems based on the ionic liquids (ILs) for its enhanced ionic drifting velocities. It is also derived that the viscosity acts as a reduction for the induced voltage by comparing systems composed of two types of ILs with different viscosity and temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...